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Goals

That	is,
w Count	number	of	signals	rcvd
w Detect	sets of	discrete	Fourier	

transform	bins	occupied	by	
each	signal
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[1] M. Laghate and D. Cabric, “Using the Time Dimension to
Sense Signals with Partial Spectral Overlap,” in IEEE
GLOBECOM, Washington, USA, 2016.

Estimate	noise	power	spectrum

Challenges:
– Colored	noise
– Spurs	and	always-on	interferers

Distinguish	Signals	with	Spectral	Overlap
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Motivating	Applications

– IEEE	802.11n	in	5GHz	bands
– LTE-Advanced
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Image Source:	Wikipedia	“List	of	WLAN	channels”

LTE	Carrier	Aggregation [2][2] H. J. Wu et al., “A wideband digital pre-distortion platform with 100 MHz 
instantaneous bandwidth for LTE-advanced applications,” in 2012 Workshop on 
Integrated Nonlinear Microwave and Millimetre-Wave Circuits, 2012, pp. 1–3.

– IEEE	802.11b/g	channels	in	2.4GHz

– Channel	bonding	in	IEEE	802.11n

Lack	of	Guard	Bands

Spectral	overlap	by	design Measurements	@	UCLA
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Existing	Work	for	Distinguishing	Signals
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Based on Blind Single	
Antenna

Spectral	
Overlap

Detect	
Bands

Blind	to	
Channel

Transmission protocols	[4],[5] û ü ü ü ü

Cyclic	frequency	[7] û ü ü û ü

Channel	model &	location	[6] û ü ü û û

Angle of	Arrival	[8] ü û ü û û

Random	Matrix	Theory	[9] ü û ü û ü

Multiple	CRs	[10],[11] ü û û ü ü

Power	Spectrum	Threshold	[12] ü ü û ü ü
Multiple	Power	Spectrum
Measurements ü ü ü ü ü

Proposed	method
and	our	prior	work	[1]
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System	Model

Wideband	sensor	
w Baseband	bandwidth	W Hz
w Additive	wide	sense	stationary	Gaussian	noise	𝜈 𝑡 ∈ ℝ%&

w Welch	power	spectrum	estimator	using	FFT	of	length	F

Incumbent	Users
w M distinct	frequency	bands
w mth band	has	Um transmitters	with	freq.	support	Bm DFT	bins

– Power	spectrum	received	from	uth transmitter:	𝑋(,* ∈ ℝ%&

– Activity	𝑎(,* 𝑡 ∈ 0,1 is	fraction	of	tth measurement	that	uth

transmitter	in	mth band	is	active

w Received	power	spectrum:

6
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Time-Frequency	Map:	1	user/band
w Time-Freq.	map	E of	received	energy:	E = [Y[1] Y[2] … Y[T]]T

w Define	matrices:	Atm= am[t],	Smf = Xm( f ),	and	Δ/0 = 𝜈 𝑡 𝑓
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(1) (1)A ´S

Output computed by Non-Negative Matrix 
Factorization (NNMF) when given M = 3

Input:	Simulated	Power	Spectrum

Output:	Time-Freq	of	Each	Tx

(2) (2)A ´S

(3) (3)A ´S

Example:	M = 3, F = 512, T = 30 
Y [t] = am,u

u=1

Um

∑
m=1

M

∑ [t]Xm,u[t]+ν[t]
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Non-Negative	Matrix	Factorization	(NNMF)

w Let	𝑀4 =	Estimated	number	of	received	signals
w NNMF	finds																	,																				to	minimize	

Challenges:
w Estimating	𝑀4 is	hard	when

w Non-convex	cost	function
Þ convergence	to	global	minima	not	guaranteed

w Cost	function	is	not	probabilistic
Þ Not	robust	to	noise

w Non-unique	solution	and					is	not	binary
Þ ,	i.e.,	thresholding						will	not	detect	all	occupied	DFT	bins
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Prior	Work:	NNMF-based	Algorithm
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Initialization

NNMF	of		
with signals

Increment

No

Detect	Occupied	Bands
Yes

ˆ 1M =

Energy	Detection
E

'E
'E

M̂
ˆ ˆ,A S

M̂

{ }ˆ1 2
ˆ ˆ ˆ, ,..., 0,..., 1MB B B FÌ -

Noise	band	
detected?

ˆ 4M =

Significant	signal	energy

Noise	Band

Reconstructed	Factors	for	

“Leaked”	
energy



D. Markovic  /  Slide 10

Motivating	NNMF	Algorithm:	Robust	XRay

i.e.,	cone	with	received	power
spectra	as	extreme	rays

Recursive	Algorithm:
1. Choose	point	with	maximum residual

as	extreme	ray
2. Measure	residual	to	all	measurements
3. Repeat	1	until	all	measurements	lie	within	cone

10

[13] A. Kumar, V. Sindhwani, and P. Kambadur, “Fast conical hull algorithms for near-separable non-negative matrix 
factorization,” in International Conference on Machine Learning, 2013.

Image source: [13]

E Y [t] | a[t][ ] = am,u[t]E Xm,u[t]⎡⎣ ⎤⎦
u=1

Um

∑
m=1

M

∑
                        + E ν[t][ ]
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Separability Assumption

i.e.,	cone	with	received	power
spectra	as	extreme	rays

Separability Assumption:
Requires	at	least	one	measurement	of	each	extreme	ray
w At	least	one	noise	only	measurement
w For	each	transmitter,	at	least	one	measurement	where	it	is	the	

only	active	transmitter
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[14] D. Donoho and V. Stodden, “When Does Non-Negative Matrix Factorization Give a Correct Decomposition into Parts?,” in 
Advances in Neural Information Processing Systems, MIT Press, 2004, pp. 1141–1148.

Image source: [13]

E Y [t] | a[t][ ] = am,u[t]E Xm,u[t]⎡⎣ ⎤⎦
u=1

Um

∑
m=1

M

∑
                        + E ν[t][ ]
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Proposed	Greedy	Energy	Minimizing	NNMF
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Welch Power Spectrum 
Estimator

No

Energy Detection 
on Detected Signals

Yes

Received Signal

Append to Time 
Frequency Map E

Ø Center Frequency
Ø Bandwidth

Detect Noise-Only 
Measurements ℒ

ℒ ≜ Measurements that 
are linear combinations 

of Detected Signals

Noise power spectrum learned from data
1. Initialize noise estimate as min. energy measurement
2. Estimate noise as mean of measurements with 

Mahalanobis distance < t to est. noise distribution
3. Repeat Step 2 until convergence

Index in 1,… , 𝑇 \ℒ with 
Lowest Energy labelled 

as Detected Signal

ℒ = 𝑇?
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Proposed	Greedy	Energy	Minimizing	NNMF
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Welch Power Spectrum 
Estimator

No

Energy Detection 
on Detected Signals

Yes

Received Signal

Append to Time 
Frequency Map E

Ø Center Frequency
Ø Bandwidth

Detect Noise-Only 
Measurements ℒ

ℒ ≜ Measurements that 
are linear combinations 

of Detected Signals

Noise power spectrum learned from data
1. Initialize noise estimate as min. energy measurement
2. Estimate noise as mean of measurements with 

Mahalanobis distance < t to est. noise distribution
3. Repeat Step 2 until convergence

Index in 1,… , 𝑇 \ℒ with 
Lowest Energy labelled 

as Detected Signal

ℒ = 𝑇?

Constrained least squares minimization estimates activity
1. Activity for noise ∈ (−∞, 1]
2. Activity for detected signals ∈ [0,∞)

»0.3´ +0.2´ + 0.5´

Measurement Detected Signal 1 Detected Signal 2 Noise Estimate
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Performance	Metrics
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w Number	of	detected	bands
w Number	of	extra	bands	detected
w Relative	Errors	in	Center	Frequency	and	Bandwidth
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Performance	Metrics
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Our	Output

Ground	Truth
Fully	Connected	
Bipartite	Graph

Computed	using	Maximum	Weight	Matching

Edge	Weights:

Symmetric	Difference

1B 2B

2B̂ 3B̂1B̂

9 564 8 10

w Number	of	detected	bands
w Number	of	extra	bands	detected
w Relative	Errors	in	Center	Frequency	and	Bandwidth

δ Bm1 , B̂m2( ) = F − Bm1 ! B̂m2
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MATLAB	Simulations:	Performance	vs.	T
Receiver:
w Bandwidth	100	MHz
w 512	length	FFT,	average	of	64	

windowed	overlapping	segments
w Up	to	50	measurements,	i.e.,	8.32ms
w Parameters:	Pfa = 0.01, 𝜏r = 0.1
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802.11g	Transmitters:
w Each	network	=	1	AP	+	2	STAs
w Channels	1,	4,	6,	8,	11
w Saturated	uplink	and	downlink	flows
w Shadow	fading	channels	with	6dB	

variance

Number	of	Detected	Signals Number	of	Extra	Signals
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Simulation:	Performance	vs.	Spectral	Overlap
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Number	of	Detected	Signals

Number	of	Extra	Signals

Relative	Error	in	Bandwidth

Frequency	Error
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USRP	Measurements:	Example

w Device:	USRP	N210	with	CBX	
daughtercard

w Measurements	at	2.452	GHz
w 8-bit	samples	@	50	MS/s
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Colored	Noise	Learnt

802.11	Signals	Detected

USRP	Measurements

Black arrows: detected supports
Labels: corresponding 802.11 channels
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Multiple	USRP	Measurements

w Contour	plot	of	2D	histogram	of	detected	center	frequencies	and	
bandwidths

w 1000	realizations	of	50	MHz	measurements	@	2.452	GHz	at	UCLA

19

Android	WiFiAnalyzer
used	to	confirm	
802.11	channels	6,	7,	
8,	and	11	in	use
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Conclusions	and	Future	Work

w Noise	power	spectrum	can	be	estimated	automatically	when	
sensing	communicating	incumbent	users

w Multiple	power	spectrum	measurements	can	distinguish	real	
world	spectrally	overlapped	signals	even	in	unknown	channels

w Conventional	signal	detection	and	estimation	theory	may	not	be	
sufficient

Future	Work:
w Find	structural	properties	of	optimization	problem	to	reduce	

computational	complexity
w Estimate	time	of	activity,	i.e.,					,	for	use	in	traffic	estimation

20
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Thank	you!

Questions?

This	material	is	based	upon	work	supported	by	the	National	Science	Foundation	under	
Grant	No.	1527026:	Dynamic	Spectrum	Access	by	Learning	Primary	Network	Topology
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