THE IMPACT OF SMALL-CELL BANDWIDTH REQUIREMENTS ON STRATEGIC OPERATORS

Cheng Chen ${ }^{1}$, Randall Berry ${ }^{2}$, Michael Honig ${ }^{2}$, Vijay Subramanian ${ }^{3}$
${ }^{1}$ Intel Corporation
${ }^{2}$ Department of EECS, Northwestern University
${ }^{3}$ Department of EECS, University of Michigan

5G Trends

\square Heterogeneous networks

- Cells (Macro/Small)

5G Trends

\square Heterogeneous networks

- Cells (Macro/Small)

Spectrum Sharing

$\square 100 \mathrm{MHz}$
\square Shared with naval radar
\square Three-tier sharing rules

- Incumbents
- Priority Access Licenses
- General Access
\square Low power
\rightarrow small cells

Spectrum Sharing

$\square 100 \mathrm{MHz}$
\square Shared with naval radar
\square Three-tier sharing rules
\square Low power
\rightarrow small cells

How will the low power / small-cell requirement affect prices, bandwidth allocation, and social welfare?

Assumptions

\square SPs manage two networks:

- Macro-cell / Small-cell
\square Two types of users: mobile / fixed
- Mobile users must connect to macro-cell network
- Fixed users can connect to macro- or small-cell network
\square Utility is a function of the rate received
- Shared spectrum
\rightarrow bandwidth (rate) is split evenly among users

Assumptions

\square SPs manage two networks:

- Macro-cell / Small-cell
\square TWo types of users: moloile/fixed
- Mobile users must connect to macro-cell network
- Fixed users can conneci io macro- or small'-cell neiwork
\square Utility is a function of the rate received
\square Each SP must provide a minimum amount of bandwidth for small cells.

Related Work

\square Chen et al:

- Workshop on Smart Data Pricing, 2015

Model for competing service providers

- Infocom, 2016

Licensed and unlicensed spectrum
\square Differences from other related work:
\square Two classes of users (mobile/fixed)
\square Providers set prices and optimize bandwidth

- Constraint on minimum small-cell bandwidth

Model

Supply
Demand

Model

Supply
Demand

Model

How do the small cell constraints affect bandwidth and prices?

Main Results (1)

An equilibrium always exists and is unique.
Adding the constraints can only decrease social welfare (α-fair utilities).

Adding Small-Cell Bandwidth

\square SPs have exclusive-use bands B_{1} and B_{2}, which can be split between macro and small cells.
\square Add bandwidth B designated for small cells.

Social Welfare: Large B

Dyspan 2017, Baltimore, MD

Social Welfare: Smaller B

Dyspan 2017, Baltimore, MD

Main Results (2)

\square An equilibrium always exists and is unique.
\square Possible effect of adding constraint on equilibrium:

Dyspan 2017, Baltimore, MD

Main Results (2)

An equilibrium always exists and is unique.
\square Possible effect of adding constraint on equilibrium:

Dyspan 2017, Baltimore, MD

Effect of Constraint on Equilibrium

Utility

\square Utility for each user is a function of the rate r.
\square Total rate (capacity) depends on spectral efficiency R_{0}

- Macro-cell capacity for SP i: $C_{i, M}=B_{i, M} R_{0}$
\square Small-cell capacity for $S P$ i: $C_{i, S}=\lambda_{s} B_{i, s} R_{0}$
$\lambda_{s}>1$ accounts for higher density and/or spectral efficiency of small-cell network

Utility

\square Utility for each user is a function of the rate r.
\square Total rate (capacity) depends on spectral efficiency R_{0}

- Macro-cell capacity for SP i: $C_{i, M}=B_{i, M} R_{0}$
\square Small-cell capacity for SP i: $C_{i, S}=\lambda{ }_{s} B_{i, s} R_{0}$
\square Will assume the class of α-fair utility functions:

$$
u(r)=\frac{r^{1-\alpha}}{1-\alpha} \quad \begin{aligned}
& \alpha \rightarrow 0, u(r) \text { becomes linear } \\
& \alpha \rightarrow 1, u(r) \text { becomes logarithmic }
\end{aligned}
$$

Sequential (Two-Stage) Game

1. SPs set bandwidths $\quad B_{i, M} \quad B_{i, S}$
2. SPs set prices $\quad p_{i, M} \quad p_{i, S}$

Fixed users choose network to maximize surplus (utility minus cost): $S(r)=u(r)-p r$ rate $r^{*}=\arg \max S(r)=D(p) \quad$ (demand function)

We will characterize sub-game perfect Nash equilibria:

1. Price equilibrium / user association given bandwidth allocation.
2. Bandwidth allocation given that prices are set according to 1 .

Revenue Maximization

$$
\max S_{i}=K_{i, M} p_{i, M} D\left(p_{i, M}\right)+K_{i, S} p_{i, S} D\left(p_{i, S}\right)
$$

$$
\text { subject to } K_{i, M} D\left(p_{i, M}\right) \leq C_{i, M}
$$

$$
K_{i, S} D\left(p_{i, S}\right) \leq C_{i, S}
$$

$$
B_{i, M}+B_{i, S} \leq B_{i}
$$

in macro-/small-cell networks

$$
\begin{aligned}
& 0 \leq p_{i, M}, p_{i, S}<\infty \\
& B_{i, M} \geq 0, \quad B_{i, S} \geq B_{i, S}^{0}
\end{aligned}
$$

Social Welfare (Utility) Objective

$$
S W=\sum_{i=1}^{N} K_{i, M} u\left(r_{i, M}\right)+K_{i, S} u\left(r_{i, S}\right)
$$

With α-fair utility functions the equilibrium maximizes SW without small-cell bandwidth constraints.

Social Welfare Loss

\square SW loss occurs when

$$
\frac{N_{f} \lambda_{S}^{1 / \alpha-1}}{N_{f} \lambda_{S}^{1 / \alpha-1}+N_{m}} \sum_{i \in \mathcal{N}} B_{i}<\sum_{i \in \mathcal{N}} B_{i, S}^{0}
$$

\square The loss satisfes:

$$
\frac{\mathrm{SW}_{\mathrm{w}}^{\mathrm{NE}}}{\mathrm{SW}_{\mathrm{wo}}^{*}} \geq\left(\frac{N_{f} \lambda_{S}^{1 / \alpha-1}}{N_{m}+N_{f} \lambda_{S}^{1 / \alpha-1}}\right)^{\alpha}
$$

\square Equality holds when $B_{i, S}{ }^{0}=B_{i}$ for every SP i.

Constraining New Bandwidth

\square Given new bandwidth B, there a exists a threshold T such that if $B>T$, constraining B for small cells reduces SW.

$$
T=\frac{\left(B_{1}^{o}+B_{2}^{o}\right) N_{f} \lambda_{S}^{1 / \alpha-1}}{N_{m}}
$$

\square If $B<T, B$ can be split between SPs 1 and 2 so that the competitive equilibrium achieves the maximum SW.

Social Welfare: Smaller B

Conclusions

\square Adding constraints on small-cell bandwidth can change competitive equilibrium and lead to a loss in SW.
\square The constraint may cause an SP to reduce its smallcell bandwidth, although the total allocation cannot decrease.
\square Constraining new bandwidth B leads to inefficient allocations when B exceeds a threshold.

