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Overview

• Harm claim thresholds (HCTs) are expressed in terms of 
measurable criteria on interference, e.g. in terms of field 
strength

• HCTs enable regulators to specify the interference environment 
in which a wireless system is expected to operate

• Observations (modeling and/or measurements) play a critical 
role for enforcement and initial design of HCTs

• In this work we make a first comprehensive proposal for how 
spectrum measurements should be treated for these purposes
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Harm Claim Thresholds (HCTs) in Brief

• Answer to: “Is there harmful interference, and who 
should fix it?”

• Explicit, up-front statement of the interference that 
systems need to tolerate before operators can bring a 
harmful interference claim 

– Engineering proxy for the legal construct “harmful 
interference”

• Incorporates receivers into regulation without using 
receiver standards
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HCT in practice

• Make observations 
(measurements or modeling)

• Construct confidence interval for the 
given confidence level

• Decide whether to declare HCT 
violation or not
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Design Objectives

• Straightforward to specify at a high level in rules, e.g. a 
small number of technology- and service-neutral parameters

• Relatively easy to accommodate new technologies, e.g. by 
updating regulatory bulletins not changing rules

• Easy to understand and apply, and in particular should not 
require sophisticated knowledge of statistics
– Contain as few parameters as possible

– Based on ex ante stratification distances rather than estimates 
derived in the course of a continuous drive test

– Enable simple estimation and planning of measurements
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Motivation – Pitfalls of Naïve Analysis

• Let’s consider a test drive
in a 10 km x 10 km square
as shown on the right

• Naïve analysis would
take all the 7266 data,
compute the percentile,
and find high statistical
confidence
– C.I. length < 1 dB

• But how reliable are
the obtained conclusions? 
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Motivation – Pitfalls of Naïve Analysis

• The stated statistical confidence is grossly overestimated, caused 
by treating all 7266 measurements as independent samples

• However, nearby drive test measurements are always heavily 
correlated, significantly reducing the amount of information they 
convey about the underlying field strength

• Therefore the “true” number of measurements is much lower

• Further, the measurements are not representative is what an 
interfered user would be likely to see, as they are obtained in a 
rural highway environment with low population density

• Overall, in our example these effects result in close to 10 dB error
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Our Proposal

• To remedy these problems we suggest to use two well-
known statistical techniques when analyzing drive test data 

• Stratification is used to remove correlated measurement 
points, enabling fair estimation of statistical confidence

• Weighting helps to ensure representativeness of 
measurements, giving more value to samples collected from 
where users are expected to be

• Results in a substantially simpler scheme than state-of-the-
art statistical approaches, at the cost of fewer usable data
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Revisiting the Drive Test Data

• When applied to the example
data set, stratification reduces
the number of sample to 67

– Details follow

• This is too small number for
the results to have any
statistical confidence

– Formally, the confidence
interval has infinite length

• Weighting also slightly changes
the estimate, but the results are
meaningless in any case
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Application to a Denser Drive

• When a denser segment of the test
drive is considered, very reasonable
results are obtained

• Stratification results in 260 remaining
samples from a 10 km x 10 km region

• Percentile estimate within 1 dB of ground
truth obtained from 4+ million samples

• Population density used as weights,
resulting in 3 dB increase in
the estimated field strength percentile

10



Implementing Stratification

• In the paper we discuss several
algorithms for implementing
stratification

• Simplest approach is the grid
based one, illustrated on the right

• Here stratification distance defines
the grid length, and just one
measurement per square is used

• We use 500 meters
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Fig. 5. The population weighted and stratified CCDF from the data set of
Figure 4.

Fig. 6. Illustration of the inhomogeneity of the density of measurement
locations arising from changes in velocity during a typical drive test, in
particular induced by traffic lights showing up as small dark spots in the
plot.

also computationally lighter method would be analogous to

how carrier sense multiple access (CSMA) medium access

control protocols operate. We would assign to each measure-

ment location a random number (“arrival time”) uniformly

from the interval [0, 1], and retain a location if and only if it has

the smallest arrival time of all the locations within distance dS .

The most complex part here is the computation of distances

between the points, requiring O(n2) operations.

An even more light-weight approach is illustrated in Fig-

ure 7, where the measurement region is divided into squares

with side length dS , and only one measurement from each

square is retained. In our example we have chosen the location

that is farthest away from the edge of the surrounding square,

but other similar choices could be made as well. This is

Fig. 7. Example of a grid-based method for implementing stratification.

the approach we have used on the preceding data sets when

constructing the stratified equivalents. Its downside compared

to the previous ones is that it does not guarantee that the

distances between nearby measurement locations are strictly

larger than dS , but this can be mitigated by a slightly more

conservative choice of the stratification distance. Since only

comparisons of coordinates and distances to a fixed number

of squares need to be computed, only O(n) operations are

needed.

Notice that the three algorithms described above differ in

other fundamental ways besides just their computational costs.

For instance, the arrival time algorithm results in a random

stratified location set, whereas the grid-based algorithm is

strictly deterministic once thedivision of themeasurement area

into squares is defined. Our examples in Figures 3 and 4 use

grid-based stratification.

C. Interpretation of Weighting when Estimating Percentiles

As discussed above, the purpose of weighting is to ensure

that the percentiles estimated are representative of what the

population of interfered users would measure, as opposed

to raw spatial estimates. No weighting would be needed

if the interfered-with population itself would conduct the

measurements,6 or if the measurement locations would be

carefully selected to follow the corresponding spatial density

after stratification. While theoretically possible, we believe

such an approach to be overly complex. Instead, we propose

to first obtain a spatially uniform sample of sufficient size (by

conducting aconventional drive test followed by stratification),

and then weight that sample with the estimated interfered-with

population density when computing the HCT percentile for the

field strength.

Weighted percentiles have an appealing geometric interpre-

tation illustrated in Figure 8. In the figure we have applied

to each (stratified) measurement location the threshold of

6Crowdsourcing is of course a possibility here, but conducting extensive
spatial field strength measurements through user terminals with highly varying
receiver qualities and configurations in a reliable fashion is still very much
an open research problem.
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Choosing the Stratification Distance, dS

• Selection of dS a crucial 
choice
– Too small   spurious 

conclusions

– Too large distance 
drives uneconomical

• We use a simple
similarity measure
– Calculate semivariogram γ(r) 

for all pairs in bins r ± Δ

– Fit parametric model

– Choose dS ~ how close to 
asymptote

• Could be derived run-time 
from data; we recommend 
fixing in advance
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Considerations on Weighting

• Population density including working time effects (e.g. 
the ORNL LandScan database) seems like the natural 
candidate for many wireless services

• However, for services such as aeronautical radars, 
emergency and military radios, etc. this should be 
replaced with corresponding receiver density estimates

• Again, choice of weighting should be part of the 
regulations, and clear for all involved stakeholders
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Stratification as Prerequisite for Weighting

• Applying weighting becomes
complex if original data are
not uniform in space

• Stratification turns the data
back to roughly uniform,
making weighting easy

• Drive tests often have lots of
samples collected at
intersections, which needs to
be compensated for
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Trade-Offs in HCT Parameter Choices

• We also studied in detail the 
interplay between
– The chosen HCT percentile (p)

– Desired statistical confidence (C.L.)

– Number of measurements
(after stratification)
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Trade-Offs in HCT Parameter Choices

• For given n, generated 100 samples 
of n measurements; plot one-sided 
C.I. length

• HCT percentile 
– Assume n=260 measurements

– Increasing HCT percentile from the 90th

or 95th to 99th or higher vastly increases 
the amount of data needed for 
enforcement

• Number of measurements 
– Assume 95th percentile

– 200-300 measurements typically yields 
estimates accurate to 5 dB or better

n = 260

16
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Determining HCT Thresholds from Measurements

• Key issue is representativeness of measurements: avoid 
underweighted regions that under-estimate field strengths

• So: add lowest allowable sum weight as additional criterion for 
admissibility of a test drive
– Probably not needed for enforcement as bias is downwards
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Fig. 10. Illustration on the use of total population weight as criteria when selecting which region to cover when conducting measurements for the initial
threshold specification.
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Fig. 11. Using the semivariogram to estimate correlation distance from data.
Gray bars denote the histogram bins of distances (with ∆ = 100m) between
measurement location pairs based on which the semivariogram is estimated.
The theoretical model (solid black line) is then fitted to the estimates placed
at the centers of the histogram bins (red dots).

but other choices are possible as well.7 For small r we would

expect little difference between the values of X i and X j ,

resulting in small differences between them and correspond-

ingly small values of γ(r ). For large r the values of the

7The most commonly suggested alternative is the autocorrelation function
C (r ), defined as the correlation coefficient between measurements X i and
X j separated by distance r . For large enough data sets in terms of both mea-
surement count and covered region the two are almost equivalent statistically.
However, the semivariogram enables additional diagnostics to be applied for
smaller measurement data sets, as discussed in the text. [7]

semivariogram become larger and larger, until saturating at

the overall variance of the data.

Wecan estimate the value of γ(r ) simply by finding all pairs

(X i , X j ) of measurements where the locations are separated

by distance r ± ∆ , where ∆ essentially defines a width of a

histogram bin, followed by the computation of the variance of

X i − X j over all such pairs. An example of such acomputation

is shown in Figure 11, illustrating both the histogram nature

of this estimator (bars) together with the estimates of γ(r )

assigned in the centres of the histogram bins (red dots). As

can be seen from the figure, the obtained estimates are quite

noisy, making them unsuitable for direct use in estimating a

suitable stratification distance. Instead, we proceed by fitting a

parametric model to the data. In the literature the exponential

form a + bexp(− r / c) is commonly used [7], [8], and works

well also for our example data set as shown in the figure (black

line).

Once the parametric model for the semivariogram γ(r ) is

obtained, we can choose a stratification distance dS based

on how close the semivariance γ(dS ) is to the asymptotic

saturation value (overall variance of the data set). A very

conservative choice would be to demand that at least 95%

of the asymptotic level is reached, but as can be seen from

our example this results in very large stratification distances,

and thereby impractically large drive test data sets being

needed for any HCT related claim.8 In our opinion a judicious

tradeoff is to choose a somewhat lower fraction, such as

having γ(dS ) equal half of the saturation value, which results

in slightly optimistic estimates of the stratified measurement

8It also might occur that the estimated semivariogram does not flatten out
to an asymptotic value. This is a strong indication that the measurements are
taken from aregion that is too small, resulting in a trend in field strength values
across the measurement region, which in turn presents itself as a constantly
growing semivariogram values as r is increased.
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What the Regulator Needs to Specify
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What the Regulator Needs to Specify

• Regulator may wish to separate parameter families
– high-level, unchanging requirements, e.g. broad policy 

requirements like field strength, percentile and C.L.

– more detailed and dynamic low-level specifications, e.g. 
stratification distances, measurement methodologies

• High-level parameters in regulation

• Low-level parameters in guidance documents 
– From regulator (e.g. FCC OET Bulletins, cf. E911)

– Delegated to standards bodies (e.g. ETSI guidance on 
implementing EU Radio Equipment Directive)

• Parties could seek waivers, e.g. to reduce stratification 
distance when cell densification occurs
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Summary and Conclusions

• Measurements play a critical role for enforcement of HCTs, 
and also for their initial design

• We propose a simple but effective method for processing 
measurement data to avoid pitfalls of naïve statistical analysis

• Key ingredients in our approach are stratification and 
weighting to ensure fair estimation of statistical confidence 
and representativeness of the measurements

• Same method can be applied beyond HCT enforcement, e.g. 
for processing of drive test data from cellular networks 
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Backup Slides
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Questions for the Audience

• Other cases where measuring RF environment rather than 
device behavior might be useful? 

• Are there other regulatory measurement problems where our 
pragmatic simplification could be applied? 
– Could this help in SAS-managed bands, e.g. enforcing Reception Limits 

on PALs in 3.5 GHz?

• How could this measurement protocol be gamed? 
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Field Strength CCDF – Naïve Statistical Approach
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Field Strength CCDF – Our Method
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Fig. 5. The population weighted and stratified CCDF from the data set of
Figure 4.

Fig. 6. Illustration of the inhomogeneity of the density of measurement
locations arising from changes in velocity during a typical drive test, in
particular induced by traffic lights showing up as small dark spots in the
plot.

also computationally lighter method would be analogous to

how carrier sense multiple access (CSMA) medium access

control protocols operate. We would assign to each measure-

ment location a random number (“arrival time”) uniformly

from the interval [0, 1], and retain a location if and only if it has

the smallest arrival time of all the locations within distance dS .

The most complex part here is the computation of distances

between the points, requiring O(n2) operations.

An even more light-weight approach is illustrated in Fig-

ure 7, where the measurement region is divided into squares

with side length dS , and only one measurement from each

square is retained. In our example we have chosen the location

that is farthest away from the edge of the surrounding square,

but other similar choices could be made as well. This is

Fig. 7. Example of a grid-based method for implementing stratification.

the approach we have used on the preceding data sets when

constructing the stratified equivalents. Its downside compared

to the previous ones is that it does not guarantee that the

distances between nearby measurement locations are strictly

larger than dS , but this can be mitigated by a slightly more

conservative choice of the stratification distance. Since only

comparisons of coordinates and distances to a fixed number

of squares need to be computed, only O(n) operations are

needed.

Notice that the three algorithms described above differ in

other fundamental ways besides just their computational costs.

For instance, the arrival time algorithm results in a random

stratified location set, whereas the grid-based algorithm is

strictly deterministic once thedivision of themeasurement area

into squares is defined. Our examples in Figures 3 and 4 use

grid-based stratification.

C. Interpretation of Weighting when Estimating Percentiles

As discussed above, the purpose of weighting is to ensure

that the percentiles estimated are representative of what the

population of interfered users would measure, as opposed

to raw spatial estimates. No weighting would be needed

if the interfered-with population itself would conduct the

measurements,6 or if the measurement locations would be

carefully selected to follow the corresponding spatial density

after stratification. While theoretically possible, we believe

such an approach to be overly complex. Instead, we propose

to first obtain a spatially uniform sample of sufficient size (by

conducting aconventional drive test followed by stratification),

and then weight that sample with the estimated interfered-with

population density when computing the HCT percentile for the

field strength.

Weighted percentiles have an appealing geometric interpre-

tation illustrated in Figure 8. In the figure we have applied

to each (stratified) measurement location the threshold of

6Crowdsourcing is of course a possibility here, but conducting extensive
spatial field strength measurements through user terminals with highly varying
receiver qualities and configurations in a reliable fashion is still very much
an open research problem.

142

24


