IEEE DySPAN 2017

Measurement Procedures for Design and Enforcement of Harm Claim Thresholds

Janne Riihijärvi, Petri Mähönen

RWTH Aachen University, Germany

J. Pierre de Vries

Silicon Flatirons Centre, University of Colorado, USA

Overview

- Harm claim thresholds (HCTs) are expressed in terms of measurable criteria on interference, e.g. in terms of field strength
- HCTs enable regulators to specify the interference environment in which a wireless system is expected to operate
- Observations (modeling and/or measurements) play a critical role for *enforcement and initial design* of HCTs
- In this work we make a *first comprehensive proposal* for how spectrum measurements should be treated for these purposes

Harm Claim Thresholds (HCTs) in Brief

- Answer to: "Is there harmful interference, and who should fix it?"
- Explicit, up-front statement of the interference that systems need to tolerate before operators can bring a harmful interference claim
 - Engineering proxy for the legal construct "harmful interference"
- Incorporates receivers into regulation without using receiver standards

HCT in practice

- 1. 50 dB(μ V/m) per MHz
 - Exceeded at ≤ 5% of locations (95th percentile)
 - 3. At the 95% confidence level

- Make observations (measurements or modeling)
- Construct confidence interval for the given confidence level
- Decide whether to declare HCT violation or not

Design Objectives

- Straightforward to specify at a high level in rules, e.g. a small number of technology- and service-neutral parameters
- Relatively easy to *accommodate new technologies*, e.g. by updating regulatory bulletins not changing rules
- **Easy to understand and apply**, and in particular should not require sophisticated knowledge of statistics
 - Contain as few parameters as possible
 - Based on ex ante stratification distances rather than estimates derived in the course of a continuous drive test
 - Enable simple estimation and planning of measurements

Motivation – Pitfalls of Naïve Analysis

y-coordinate [m]

- Let's consider a test drive in a 10 km x 10 km square as shown on the right
- Naïve analysis would take all the 7266 data, compute the percentile, and find high statistical confidence
 - C.I. length < 1 dB
- But *how reliable* are the obtained conclusions?

x-coordinate [m]

INETS

Motivation – Pitfalls of Naïve Analysis

- The stated statistical confidence is grossly overestimated, caused by treating all 7266 measurements as independent samples
- However, nearby drive test measurements are always heavily correlated, significantly reducing the amount of information they convey about the underlying field strength
- Therefore the "true" number of measurements is much lower
- Further, the measurements are not representative is what an interfered user would be likely to see, as they are obtained in a rural highway environment with low population density
- Overall, in our example these effects result in close to 10 dB error

Our Proposal

- To remedy these problems we suggest to use two wellknown statistical techniques when analyzing drive test data
- *Stratification* is used to remove correlated measurement points, enabling fair estimation of statistical confidence
- Weighting helps to ensure representativeness of measurements, giving more value to samples collected from where users are expected to be
- Results in a substantially simpler scheme than state-of-theart statistical approaches, at the cost of fewer usable data

Revisiting the Drive Test Data

y-coordinate [m

- When applied to the example data set, stratification reduces the number of sample to 67
 - Details follow
- This is too small number for the results to have any statistical confidence
 - Formally, the confidence interval has infinite length
- Weighting also slightly changes the estimate, but the *results are meaningless* in any case

x-coordinate [m]

Application to a Denser Drive

- When a denser segment of the test drive is considered, *very reasonable results* are obtained
- Stratification results in 260 remaining samples from a 10 km x 10 km region
- Percentile estimate *within 1 dB of ground truth* obtained from 4+ million samples
- Population density used as weights, resulting in 3 dB increase in the estimated field strength percentile

Implementing Stratification

- In the paper we discuss several algorithms for implementing stratification
- Simplest approach is the grid based one, illustrated on the right
- Here stratification distance defines the grid length, and just one measurement per square is used
- We use 500 meters

Choosing the Stratification Distance, d_s

- Selection of d_s a crucial choice
 - Too small → spurious conclusions
 - Too large distance → drives uneconomical
- We use a simple similarity measure
 - Calculate semivariogram γ(r)
 for all pairs in bins r ± Δ
 - Fit parametric model
 - Choose d_s ~ how close to asymptote
- Could be derived run-time from data; we recommend fixing in advance

Considerations on Weighting

- Population density including working time effects (e.g. the ORNL LandScan database) seems like the natural candidate for many wireless services
- However, for services such as aeronautical radars, emergency and military radios, etc. this should be replaced with corresponding receiver density estimates
- Again, choice of weighting should be part of the regulations, and clear for all involved stakeholders

Stratification as Prerequisite for Weighting

- Applying weighting becomes complex if original data are not uniform in space
- Stratification turns the data back to roughly uniform, making weighting easy
- Drive tests often have lots of samples collected at intersections, which needs to be compensated for

Trade-Offs in HCT Parameter Choices

- We also studied in detail the interplay between
 - The chosen HCT percentile (p)
 - Desired statistical confidence (C.L.)
 - Number of measurements (after stratification)

- 1. 50 dB(μ V/m) per MHz
 - Exceeded at ≤ 5% of locations (95th percentile)
 - 3. At the 95% confidence level

Trade-Offs in HCT Parameter Choices

- For given n, generated 100 samples of n measurements; plot one-sided C.I. length
- HCT percentile
 - Assume n=260 measurements
 - Increasing HCT percentile from the 90th or 95th to 99th or higher vastly increases the amount of data needed for enforcement
- Number of measurements
 - Assume 95th percentile
 - 200-300 measurements typically yields estimates accurate to 5 dB or better

Determining HCT Thresholds from Measurements

Measured 95th percentile of field strength x Total weights

... for all distinct 10 km x 10 km regions in data

- Key issue is representativeness of measurements: avoid underweighted regions that under-estimate field strengths
- So: add lowest allowable sum weight as additional criterion for admissibility of a test drive
 - Probably not needed for enforcement as bias is downwards

What the Regulator Needs to Specify

Category	Parameters	Examples
HCT policy	Frequency band Percentile of field strength Field strength threshold Confidence level	2 GHz 95th 50 dB(uV/m) per MHz 95% ($\alpha = 0.05$)
Measurement procedure	Stratification procedure Weighting method Submission of drive data Responsibility for processing Requirements on equipment	Grid-based Population weighting Complete without gaps Claimant Standard drive test
Derivation of d_S	Allowed methodologies Threshold semivariance / autocorrelation Flexibility in model choice	Measurements or data from planning tools Half of saturation value (or correlation ≤ 0.5) Exponential only

What the Regulator Needs to Specify

- Regulator may wish to separate parameter families
 - high-level, unchanging requirements, e.g. broad policy requirements like field strength, percentile and C.L.
 - more detailed and dynamic low-level specifications, e.g. stratification distances, measurement methodologies
- High-level parameters in regulation
- Low-level parameters in guidance documents
 - From regulator (e.g. FCC OET Bulletins, cf. E911)
 - Delegated to standards bodies (e.g. ETSI guidance on implementing EU Radio Equipment Directive)
- Parties could seek waivers, e.g. to reduce stratification distance when cell densification occurs

Summary and Conclusions

- *Measurements play a critical role* for enforcement of HCTs, and also for their initial design
- We propose a *simple but effective method* for processing measurement data to avoid pitfalls of naïve statistical analysis
- Key ingredients in our approach are *stratification* and *weighting* to ensure fair estimation of statistical confidence and representativeness of the measurements
- Same method can be applied *beyond HCT enforcement*, e.g. for processing of drive test data from cellular networks

Backup Slides

Questions for the Audience

- Other cases where measuring RF environment rather than device behavior might be useful?
- Are there other regulatory measurement problems where our pragmatic simplification could be applied?
 - Could this help in SAS-managed bands, e.g. enforcing Reception Limits on PALs in 3.5 GHz?
- How could this measurement protocol be gamed?

Field Strength CCDF – Naïve Statistical Approach

Field strength [dB(uV/m)/MHz]

Field Strength CCDF – Our Method

Field strength [dB(uV/m)/MHz]

